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Abstract

Background

Uganda has a unique set up comprised of resource-constrained economy, social-economic

challenges, politically diverse regional neighborhood and home to long-standing refuge cri-

sis that comes from long and protracted conflicts of the great lakes. The devastation of the

on-going global pandemic outbreak of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is likely to be escalated by these circumstances with expectations of the

impact of the disease being severe.

Materials and methods

In this study, we formulate a mathematical model that incorporates the currently known dis-

ease characteristics and tracks various intervention measures that the government of

Uganda has implemented since the reporting of the first case in March 2020. We then evalu-

ate these measures to understand levels of responsiveness and adherence to standard

operating procedures and quantify their impact on the disease burden. Novel in this model

was the unique aspect of modeling the trace-and-isolate protocol in which some of the

latently infected individuals tested positive while in strict isolation centers thereby reducing

their infectious period.

Results

The study findings show that even with elimination of all imported cases at any given time it

would take up to nine months to rid Uganda of the disease. The findings also show that the

optimal timing of easing of lockdowns while mitigating the possibility of re-emergence of a

second epidemic wave requires avoiding the scenario of releasing too-many-too-soon. It is
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even more worrying that enhancing contact tracing would only affect the magnitude and tim-

ing of the second wave but cannot prevent it altogether.

Conclusion

We conclude that, given the prevailing circumstances, a phased-out lifting of lockdown mea-

sures, minimization of COVID-19 transmissibility within hospital settings, elimination of

recruitment of infected individuals as well as enhanced contact tracing would be key to pre-

venting overwhelming of the healthcare system that would come with dire consequences.

1. Introduction

A pandemic involving a fast spreading and fatal COVID-19, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) is currently impacting livelihoods globally [1, 2]. Its

impact on global public health and economies emanates directly from the disease and the

unintended consequences of the intervention measures implemented to curb its spread. It is

associated with high morbidity and mortality levels and neither has a known cure nor a vac-

cine. Although still ongoing, its burden has already exceeded those of associated coronavirus

namely, severe acute respiratory syndrome and Middle East respiratory syndrome [3].

On 21st March 2020, Uganda reported her first case of COVID-19 which was imported [4].

Subsequently, more predominantly imported cases were detected and the government

responded by issuing the following guidelines to curb the spread—closure of schools, religious

places, non–essential businesses, entertainment places, the stoppage of public transport, the

social distancing and stay home–stay safe campaigns. The measures were intended to serve the

purpose of; eliminating crowding places that would provide breeding grounds of new cases,

limiting introduction of imported cases, limiting the chances of community transmission, and

preventing the potential long-distance pathogen spread through vehicle facilitated movement.

It is estimated that these measures reduced the susceptible population to about 10% initially

(comprising mainly of essential workers and the non-complaint), with the fraction increasing

to around 30% upon partial easing within the first two months.

These measures greatly slowed down the spread of the disease and accorded Uganda pre-

cious time to prepare and mobilize resources. Due to climatic, demographic and other differ-

ences between populations as well as country-level variations in the timing [5] and the nature

of interventions, it is a challenge to come up with a one-fits-all approach to dealing with novel

outbreaks globally. Consequently, designing efficient and effective region-specific intervention

measures is key. This design process can be guided by theoretical studies involving mathemati-

cal models that incorporate the deployed interventions [5–12] as so far demonstrated for sev-

eral countries and the World Health Organization [5, 8, 10, 13–17]. Such models provide a

platform to perform scenario analyses through which in-depth insights into epidemic trends

can be gained and the impact of the proposed interventions on disease transmission can be

assessed. However, modeling the transmission dynamics of COVID-19 which is a novel and

highly transmissible disease that can also be spread by asymptomatic individuals with a long

incubation period is a challenge [18].

Regional differences call for the development of elaborate and locally parameterized mathe-

matical models for more reliable predictions. The role of compartmental mathematical models

in predicting COVID-19 dynamics under varying interventions has been demonstrated.

Examples of such studies include, Yang et al. [19] who effectively predicted the epidemic peaks
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and sizes in China using an approach that integrated population migration and COVID-19

epidemiological data into a Susceptible-Exposed-Infectious-Removed (SEIR) model together

with an artificial intelligence approach. Also, Carcione et al. [20] demonstrated how mathe-

matical models can be used to generate meaningful insights amidst epidemiological and etio-

logical data challenges. They simulated a COVID-19 epidemic for Italy based on an SEIR

model and they emphasized the importance of assessing the effectiveness of lockdowns on epi-

demic burden.

Relatedly, Chintalapudi et al. [21] concluded basing on outcomes of their data driven

model analysis that if the Italian government extended the March 2020 country lockdown and

self-isolation measures by 60 days, the number of registered cases would decrease by 35%

while those recovered would increase by 66%. All these studies demonstrate the utility of math-

ematical models in assessing the impact of intervention measures on COVID-19 dynamics.

On using modeling to assess how efficiently lockdown restrictions can be eased in the United

Kingdom, Rawson et al. [22] applied an optimal control framework to an adapted SEIR model

framework and found that the optimal strategy was a phased-out release.

Country-variations in the implementation of COVID-19 control measures among others

may require formulation and parametrization of country-specific mathematical models. It is

noteworthy that the government of Uganda initially implemented one of the strictest control

measures in Africa that, among others, included institutional isolation of all arriving individu-

als, contact persons of confirmed cases and a strictly enforced lockdown of all non-essential

activities [23].

We developed a mathematical model to study the dynamics of COVID-19 in Uganda and

use it to forecast the disease trend under various intervention scenarios. The model was

uniquely formulated in a such a way that it captures the trace-and-isolate protocol that was

strictly implemented in Uganda. Additionally, although there are other approaches to model-

ing lockdown (e.g. [22]), our approach of having a given percentage of the susceptible popula-

tion being totally unavailable to mingle was motivated by Uganda’s strictness in enforcing

lockdown measures. Using this model, implications of complacency, non-adherence to the

standard operating procedures (SOPs) to curb disease spread as well as the timing and magni-

tude of easing lockdown are assessed. Ultimately, the study generates information to guide to

the design of intervention measures suitable for the country and by extension, for other coun-

tries with similar demographic and other generic characteristics.

2. Materials and methods

This study uses data and information that have been reported by the World Health Organiza-

tion (WHO) along with data reported by the Ministry of Health (MoH) Uganda during press

briefings since the start of the pandemic. Data from existing literature on COVID-19 were also

used in the parametrization process.

2.1 Model formulation, approach and variables

We develop a deterministic ordinary differential equation (ode) based epidemic model to cap-

ture the transmission dynamics of the disease. The model assumes frequency-dependent dis-

ease transmission and a homogeneous-mixing approximation. The homogeneous-mixing

approximation—translating into the fact that every individual in the population having an

equal chance of interacting with any other individual)- is motivated by the observed transmis-

sion patterns in which there seems to be no geographic clusters whereas the frequency-depen-

dence in the transmission term is deemed suitable since the population size is large. Moreover,

if the population size remains more or less constant as an epidemic passes through, then
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density- and frequency-dependent models are equivalent [24–29]. The underlying compart-

mental model is of the SEIHR(S) format with the population split into compartments deter-

mined by their disease status. These include S(t) representing the susceptible population E(t)
representing the latently infected individuals, the I(t)-class split into Ia(t) for the asymptomatic

infectious and Is(t) for the symptomatic infectious individuals, H(t) for the hospitalized cases,

and R(t) representing the recovered individuals.

2.1.1 Transitions through compartments. In the model, individuals move between the

compartments at rates determined by the underlying processes. These processes include infec-

tion of an S(t) individual who consequently becomes latently infected. Upon completion of the

latent period, a fraction (c) of the E(t) individuals proceeds to become infectious while already

in isolation in institutional quarantines. Of the remaining untraced E(t) individuals, a fraction

(r) proceeds to become asymptomatic while the rest become symptomatically infectious. The

infectious individuals that remain in the community are subsequently identified and hospital-

ized (into H(t) class) at rates ωa and ωs respectively. The disease can be fatal and symptomatic I
(t) individuals can succumb to the disease prior to hospitalization at a per capita rate (σs) or at

a reduced rate (σh) upon hospitalization. H(t) individuals proceed to recover (into R(t) class) at

a per capita rate (α) where they are assumed to be (temporarily) immune to the disease. The

model incorporates recruitment of susceptible, latently infected (a fraction (e)) and asymptom-

atically infectious (a fraction (a)) individuals and departures of susceptible or recovered indi-

viduals at a per capita rate λ.

2.1.2 Model assumptions. In addition to the generic assumptions on mixing pattern and

transmission term formulation stated above, the other assumptions made include:

a. For the relatively short-term dynamics, an epidemic model in which the vital dynamics

(i.e., birth and natural mortality) are ignored is opted for.

b. Upon infection, some latently infected individuals can be identified (e.g., through contact

tracing) and subsequently individually isolated under high biosecurity conditions leading

to their eventual hospitalization upon testing positive (i.e. completing their latent period),

thereby denying them a chance of ever infecting other individuals in the community, while

others may remain in the community and become infectious up until when they are identi-

fied and hospitalized.

c. In relation to the disease transmission potential, like the hospitalized individuals, individu-

als in institutional quarantine such as the traced contacts that later turn out to have been

latently infected at the moment of their quarantine are assumed not to participate in disease

transmission while in supervised quarantine centers.

d. Asymptomatically infectious individuals are assumed to be less likely to succumb to the dis-

ease but this is still being debated globally, with initial studies indicating cases of lung dam-

age development in such individuals [30].

e. On disease recovery, the model parameter (τ) can be varied to capture situations of varying

duration of disease-induced immunity, ranging from no immunity to temporary and to

life-long immunity at simulation level.

f. The arriving individuals (i.e., truck drivers, returnees and refugees etc.) comprise of suscep-

tible, latently infected and asymptomatic infectious individuals while those exiting are sus-

ceptible and perhaps (later) the recovered.

g. The hospitalized individuals have potential of spreading the disease (i.e., hospital-acquired

infections) albeit at a lower rate than the free-leaving infectious individuals.
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h. Although viral loads have been reported to be similar between asymptomatic and symp-

tomatic patients [31], the asymptomatically infected individuals may have a reduced infec-

tivity because they may not cough or sneeze as much as the symptomatic. This however

needs to be further elucidated.

i. The analysis was performed as the pandemic was still ongoing in Uganda, and as such the

first 58 days of the reported confirmed cases were used to examine the fit of the model. Con-

sequently, day 58 was crucial in the initiation of most of the simulated scenarios.

2.2 Model parameters

The disease-specific parameters were derived from existing relevant literature and contextual-

ized to the region of interest. For the parameters where there was possible uncertainty, a plau-

sible range was set and a sensitivity analysis performed. To capture the potential impact of the

variation in intervention measures over time, the new recruitments were modeled by time-

dependent step functions to mimic the variations in implemented measures. Following the

approaches in [10, 18], the parameters (namely, a and e) that would require further research

for refinement, values within biologically feasible and practical ranges were chosen so that the

simulations aligned with the reported cases in the validation step. Table 1 presents the descrip-

tion and values of parameters used in this study. For some of the parameter values derived

from the Ministry of Health press briefs and other government agency websites, we describe

what information was utilized in their respective footnotes in Table 1.

2.3 Conceptual model and equations

Based on the above descriptions, the corresponding compartmental model to capture the

transmission dynamics of the disease is presented in Fig 1. Based on the details given above,

we obtain the following system of odes (Eqs 3.1–3.6) to capture the transmission dynamics of

the disease in Uganda:

dS
dt
¼ ð1 � ðaþ eÞÞlN �

bbSðqIa þ Is þ gHÞ
N

þ tR � lS ð3:1Þ

dE
dt
¼ elN þ

bbSðqIa þ Is þ gHÞ
N

� rE ð3:2Þ

dIa
dt
¼ alN þ rrE � oaIa ð3:3Þ

dIs
dt
¼ ð1 � ðcþ rÞÞrE � ssIs � osIs ð3:4Þ

dH
dt
¼ crEþ oaIa þ osIs � shH � aH ð3:5Þ

dR
dt
¼ aH � tR � lR ð3:6Þ

where N(t) = S(t)+E(t)+Ia(t)+Is(t)+H)+R(t).
In Eq (3.1), the term (1−(a+e))λN represents the number of arriving susceptible individuals

per day,
bbSðqIaþIsþgHÞ

N represents the number of susceptible individuals that become latently
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Table 1. Summary of the parameters used in the disease transmission model as obtained from WHO and MoH (Uganda) briefings and reports as well as from rele-

vant literature as indicated.

Parameter Description Value/range

(units)

Source(s)

a(t) Percentage of arrivals that are asymptomatic 0.000015–0.018 Calibrated

e(t) Percentage of arrivals that are latently infected 0.000015–0.018 Calibrated

λ Per capita recruitment rate 1.5/43000 (per

day)

[42]a

β Disease transmission rate 0.5944 (per day) [9]

b Percentage of susceptible individuals that is available 10% Estimated based on UBOS data [43] and Covid-19 control

measures [23] b

g Infectivity factor for hospitalized individuals 0.01 Assumed based on [44]c

q Infectivity factor among asymptomatic individuals 1 Assumed

α Recovery rate of hospitalized individuals 0.05 (per day) Estimated based on [4, 45]

τ Waning rate of disease-induced immunity 0� (per day) Assumed

ρ Progression rate from latent stage to infectious stage 0.2 (per day) [17]

r Percentage of latently infected individuals in community that becomes

asymptomatic

56% [40, 41]

σs Disease induced mortality rate in symptomatic non-hospitalized

individuals

0.008 Estimated based on [4, 46]

σh Disease-induced mortality rate for hospitalized individuals 0.0008 Assumed based on [44]

ωa Hospitalization rate of asymptomatic infectious 0.2 (per day) Set based on [3, 4, 9, 10]

ωs Hospitalization rate of asymptomatic infectious 0.5 (per day) Set based on [3, 4, 9, 10]

c Percentage of latently infected individuals that is traced and isolated

immediately.

20% Estimated based on [42]d

aEstimated based on testing data of arriving truck drivers that was between 1000 and 2000 per day.
bEstimated based on the Uganda Bureau of Statistics data that of the 43 million Ugandans, 15 million are school going, >75% of adults engaged in informal sector and

the strictness of lockdown measures the initially left only essential workers of approximately 4 million to mingle.
cAssumed based on the report that 530 health workers had been infected with 6 fatalities by 30 September 2020.
dEstimated based on the reported number of new infections reported among isolated individuals in MoH press briefings.

https://doi.org/10.1371/journal.pone.0247456.t001

Fig 1. A compartmental model for fatal COVID-19 transmission dynamics that incorporates arrival of infected

and susceptible individuals and departure of susceptible and/or recovered individuals and incorporates contact

tracing and isolation of suspected contacts of infectious individuals. The boxes represent population sub-groups

while the arrows indicate the flow of individuals. The dashed arrow presents a yet-to-be resolved aspect on nature, if

any, of immunity conferred by the disease upon recovery.

https://doi.org/10.1371/journal.pone.0247456.g001
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infected per day, τR represents the number of previously immune individuals that lose their

disease-induced immunity to become susceptible per day and λS represents the number of

departing susceptible individuals per day. In Eq (3.2), the term eλN represents the number of

arriving latently infected individuals per day while ρE represents the number of latently

infected individuals that progress to become infectious per day. In Eq (3.3), the term aλN rep-

resents the number of arriving asymptomatically infectious individuals per day, rρE represents

the number of latently infected individuals that become asymptomatically infectious per day

and ωaIa represents the number of asymptomatically infectious individuals that are hospital-

ized per day. In Eq (3.4), the term (1−(c+r))ρE represents the number of latently infected indi-

viduals that become symptomatically infectious per day, σsIs represents the number of

symptomatically infectious individuals that succumb to the disease before being hospitalized

per day and ωsIs represents the number of symptomatically infectious individuals that are hos-

pitalized per day. In Eq (3.5), the term cρE represents the number of latently infected individu-

als that were traced and isolated prior to being hospitalized upon testing positive per day, ωaIa
represents the number of asymptomatically infectious individuals that are hospitalized per

day, ωsIs represents the number of symptomatically infectious individuals that are hospitalized

per day, σhH represents the number of hospitalized individuals that succumb to the disease per

day while αH represents the number of hospitalized individuals that recover from the disease

per day. Lastly, in Eq (3.6), the term λR represents the number of departing recovered individ-

uals per day and the other two terms are described above.

3. Model analysis and simulations

3.1 Qualitative analysis

The model was analyzed qualitatively to generate insightful thresholds that can inform public

health policy decisions. Under this analysis, the biological feasibility of the model was assessed,

the expression for the basic reproduction number (R0) defined as the secondary infections

generated by a typical COVID-19 infectious individual when introduced in a naïve population

was derived using the next generation matrix method [32] and equilibrium points were deter-

mined and their stability analyzed. Summarized key results of these analyses are presented

under the results’ section and the detailed approaches and all other findings are included in

the S1 File.

3.2 Quantitative analysis and model simulations

Intervention scenarios were analyzed based on their impact on two selected disease burden

indicators namely, the number of hospitalized and undetected infectious cases in the commu-

nity. Unless stated otherwise, in each scenario; all other parameters were kept at their default

values, Day 58 was assumed to be the initiation moment of the assessed additional interven-

tions where applicable and, all simulated scenarios are for the Ugandan population of 43 mil-

lion with the immediately implemented intervention measures estimated to have initially left

10% of the population susceptible (this percentage representing essential service providers and

possible not compliant cases), with this proportion increasing to 30% after 58 days due to eas-

ing and complacency. The model was implemented both in Mathematica1 12.0 (Wolfram

Research, Inc.) and MatLab software and the simulated period was 365 days.

3.2.1 Intervention scenarios analysis and possibility of second epidemic wave. The
impact of lockdown effectiveness and easing. Here, three scenarios differing in the level of sus-

ceptible proportion after 58 days were assessed. Scenario A1 involved maintaining the propor-

tion at 10% while in A2 and A3, the proportion is increased to 30% and 50% respectively. Note
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that under this analysis, the other implemented measures such as self-isolation, social distanc-

ing and the stay-home-stay-safe campaigns are also implicitly investigated.

The dynamic impact of constant external disease pressure. The effect of reducing the number

of imported infectious and latently infected cases (after 58 days of reporting first case) by; 50%

in Scenario A2, completely eliminating all imported cases in Scenario B2 and Scenario C2 in

which no infectious individuals are imported and only 10% latently infected individuals are

imported.

The possibility of a second wave of infection. Starting with a (hypothetical) situation in which

the epidemic has been brought under control with the number of hospitalized individuals

reducing significantly during the simulated period, we investigate the possibility of having a

second wave upon partial easing on the implemented lockdown measures. This simulation

was intended to determine when it would be “safe” to allow up to 75% of the population to

resume their normal activities without having to worry about the possibility of having a second

wave of infection that can be initiated by the few remnant infectious individuals in the com-

munity. Two scenarios in which the proportion susceptible is increased from 30% that was ini-

tiated at 58 days to 75% after 210 and 300 days post first case reporting in Uganda are

simulated.

3.2.2 Sensitivity analysis. Model robustness to and the impact of the various parametric

inputs is evaluated using the Latin Hypercube Sampling scheme that was introduced by

Marino et al. [33]. This method is based on the Monte Carlo type of sampling methods that

caters for unbiased estimates. Since each parameter is sampled independently, a sample size of

N = 300 (set to this value to guarantee precision of the outcomes) has been divided into N
equal probability intervals and the sampling is based on a uniform probability density func-

tion, given the novelty of the disease. The model parameters are assessed and ranked based on

their impact on the dynamics of the symptomatic infectious individuals since this number is

likely to be one of the key determinants of the epidemic burden.

4. Results

In this section, we present results from the different analyses of the model.

4.1 On qualitative analysis of the model

The basic reproduction number is given by R0 = R1+R2+R3, where R1 ¼
bbð1� c� rÞ
ssþos

is the repro-

ductive rate of symptomatic individuals, R2 ¼
bbrq
oa

is the reproductive rate of asymptomatic

individuals and R3 ¼
bgbððcþrÞssþosÞ

ðaþshÞðssþosÞ
is the reproductive rate of hospitalized individuals. Addition-

ally, 1

oa
is the time that an individual spends in the asymptomatic class, 1

ssþos
is the time that an

individual spends in the symptomatic class and 1

ðaþshÞ
is the time a hospitalized individual

spends in hospital.

The biological feasibility of the model was guaranteed by proving that all its variables are

non-negative at all time t, i.e., the model outputs with positive initial values will remain posi-

tive at all time t > 0. On the existence and stability of equilibrium points, the disease free equi-

librium point was found to be locally asymptotically stable when R0 < 1 and unstable

otherwise. The analysis further revealed that if all infected travelers were denied entry into the

country, the disease could only invade at a very low prevalence level if R0 > 1. For further ana-

lytical details on these, refer to the S1 File.
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4.2 On the impact of lockdown measures

The results on the assessment impact of reducing susceptible population thereby partially

depriving the infection of susceptible individuals are presented in Fig 2. Note that in this analy-

sis, a small percentage of available susceptible population translates to more strict and effective

lockdown measures that only avail a few susceptible individuals that may arise from essential

workers and the few non-adherent cases.

Overall, the results show that the disease burden is directly and heavily dependent on the

proportion of the susceptible individuals available. For example, we observe that, if the avail-

able proportion is increased from the initial 10% to 50% after 58 days, within one year, then

hospitalized cases will reach very high levels (exceeding 15,000), and the undetected infectious

individuals (comprising of the yet-to-be hospitalized asymptomatic and symptomatic infec-

tious individuals) will be high at close to 2500. These results demonstrate that if we ease lock-

down by releasing 50% of susceptible population for the Ugandan situation with 3200 hospital

beds (of which only 55 were functional ICU as of 2018 [34]) within 150 days, the COVID-19

related hospitalization demand would have already overwhelmed the current resources.

Besides over-stretching the health care system, the number of undetected cases that would be

living freely in the community, of whom a half would be asymptomatic and hence harder to

detect, would further strain disease response efforts of contact tracing. Note that, even in the

relatively ideal situations of maintaining only 10% or 30% of susceptible population mingling,

the maximum hospitalization requirements would reach 369 and 844 beds respectively within

one year, way beyond the number of functional ICU beds.

4.3 On the dynamic impact of constant external disease pressure

The findings from the assessment of the imported cases under partially lifted lockdown are

presented in Fig 3. Generally, the results reveal that the disease will not be wiped out of Uganda

for as long as we still have imported cases no matter how few. We observe in Scenario A2 that

reducing the imported cases by half will not be immediately impactful as the disease will con-

tinue to grow exponentially for months. Moreover, even in the near perfect scenario (C2)

where all asymptomatically infected are blocked along with blocking 90% of arriving latently

infected entrants, the disease will persist in the community past the one year simulated period.

Even more worrying is the fact that the prevalence level would be higher at higher levels of sus-

ceptible population.

Fig 2. The effect of reducing the proportion of susceptible population after 58 days since the reporting of the first

confirmed COVID-19 case in Uganda. Scenario A1 involves maintaining the 10% level while the alternative scenarios

investigated are B1 involving 30% and C1 involving 50% of the national population of 43 million being susceptible.

The different panels depict the time series variation as Panel (a): the number of hospitalized individuals and Panel (b):

the number of undetected infectious individuals that are freely living in the communities. In each scenario, all other

parameters are kept at their default values.

https://doi.org/10.1371/journal.pone.0247456.g002
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4.4 On the possibility of a second wave of infection

The question addressed here pertains to determining when and how lockdown should be lifted

without posing the risk of having a second wave of infection. Results on this assessment are

presented in Fig 4. The model predicted outcomes demonstrate a possibility of observing a sec-

ond wave of infection upon lifting the lockdown too soon. The simulations reveal that with the

current levels of contact tracing, having released up to 75% of susceptible after 210 days would

guarantee emergence of a second epidemic wave. It is even more worrying, that enhancing

contact tracing would only affect the magnitude and timing of the second wave but cannot

prevent it altogether. Thus it can concluded that, even in a fairly ideal situation in which the

control efforts in place (e.g., total elimination of imported cases manage to initially curb the

spread of the virus, once the lockdown is hurriedly lifted, the yet-to-be detected cases in the

community, no matter how few, have potential to start a second wave of infection.

4.5 On sensitivity analysis

The findings from the sensitivity analysis are presented in Fig 5. These results could ideally

partly inform the process of prioritizing intervention measures as they rank the model

Fig 3. The effect of reducing the number of imported COVID-19 cases and latently infected individuals by 50% in

Scenario A2, are completely eliminated in Scenario B2 and in Scenario C2 there are no asymptomatic infectious

and there are only 10% latently infected individuals that are granted entry after 58 days post first case reporting

in Uganda. These measures are implemented together with a partially lifted lockdown where 30% (instead of 10% that

is assumed to be in place before the 58 days) of the population is susceptible. The different panels depict the time series

variation for, Panel (a): the number of hospitalized individuals and Panel (b): the number of undetected infectious

individuals that are freely living in the communities. In each scenario, all other parameter values at maintained at their

default values.

https://doi.org/10.1371/journal.pone.0247456.g003

Fig 4. The possibility of having a second wave of COVID-19 infections upon easing lockdown measures with no

hospital acquired infections and after 58 days, there is assumed to be an initial 30% ease in the lockdowns and no

more imported cases. Panel (a) shows easing of lockdown from 10% to 30% susceptible after 58 days and further

easing to 75% after 300 days of lockdown and could be sooner if contact tracing efforts were intensified. Panel (b) is a

case of easing lockdown from 10% to 30% after 58 days followed by 75% susceptible after 210 days of lockdown–a case

of too many and too soon. In each scenario, all other parameter values are maintained at their default values.

https://doi.org/10.1371/journal.pone.0247456.g004
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parameters based on their impact on one of the key indicators of the epidemic burden. From

the sensitivity analysis, the most impactful parameters identified include the arriving propor-

tion of infected individuals (a), the per capita recruitment rate (λ), the disease transmission

rate (β), the proportion of susceptible population available for infection (b), and the efforts of

contact tracing and subsequent isolation of latently infected individuals (c) among others.

5. Discussion

Findings of this study show that the immediately implemented measures by the Government

of Uganda averted thousands of cases that would have overstretched the health system within

a couple of months (Fig 2). This would have consequently affected the quality of treatment

offered leading to more fatalities and hospital acquired infections due to fatigue and laxity.

The results in Fig 2 further show that even with only a 10% susceptible fraction, the number of

hospitalizations would reach as high as 369 individuals within a year. If 5–7% of these require

intensive care admission as estimated for Wuhan [35], the capacity of the available functional

ICU bed facilities in Uganda which stood at only 55 as of 2018 [34] would be exceeded.

On imported cases, results show that without significantly altering the current situation,

measures on partial lockdowns and use of masks are insufficient to stop COVID-19 and as

such the disease will remain in the population (Fig 3). In all the assessed scenarios the disease

would be wiped out in the case where there are no infected arrivals beyond the first 58 days

and in this case the disease would be wiped out within 270 days as seen from Fig 3. This impact

of imported cases is also emphasized by the findings from the sensitivity analysis. Currently,

these cases are being regulated through enforcement of mandatory screening for clinical signs

and testing at border points. This screening faces a challenge of reagent limitation, imperfect

test accuracy, arrival of asymptomatic and latently infected individuals that may pass as false

Fig 5. Pearson’s Rank Correlation Coefficients (PRCCs) tornado simulation of the model’s most sensitive

parameters sampled 300 times using the Latin hypercube sampling scheme. Sensitivity variation with respect to

time is analyzed at two time points, 30 days and 58 days that could be used as initialization points or start times for the

intervention measures. The order of appearance of parameters in the figure legend follow the left to right order in

labeling the corresponding bars. For example, the topmost label corresponds to the first bar in the figure and so on.

https://doi.org/10.1371/journal.pone.0247456.g005
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negatives during screening as well as the porosity of some of the national borders. Thus, adop-

tion of alternative less-risky means of essential cargo delivery (e.g., by rail and ship services)

combined with quarantining of all entrants for a duration not shorter than the incubation

period should be enforced. Besides improving test accuracy and sample handling, the number

of false negatives can also be minimized by ensuring that individuals do not get infected so

close to being tested as the disease is not detectable until the latent period is surpassed. Thus,

avenues of infection at testing points need to be eliminated. With the worrying situation of

increased reported cases in our neighboring countries, the impact of Uganda’s interventions

would be greatly affected.

Amidst challenges of social-economic impact of COVID-19, agitation of lifting lockdown

may downplay the impact of intervention measures and the study findings highlight the

importance of optimal timing and magnitude of lockdown easing (Fig 4). Effective phased-out

ease of lockdown needs to be well studied and executed. The results in Fig 4 reveal that, even

in a fairly ideal situation with no new arrivals of imported cases, once the lockdown is hur-

riedly lifted to a 75% level, the yet-to-be detected cases in the community have potential to

start a second and more disastrous epidemic wave. Note however that with enhanced surveil-

lance and contact tracing, gradual easing by releasing smaller percentages of susceptible indi-

viduals from lockdown can still be safely executed sooner than the optimum 300 days for the

75%. On the importance of a phased-out release of lockdown restrictions, a modeling study

parametrized for the United Kingdom reported that the optimum strategy was to release

approximately half of the population 2 to 4 weeks from the end of an initial infection peak and

then wait another 3 to 4 months to release everyone [22].

Sensitivity analysis results (Fig 5) reveal that recruitment of infected truck drivers, lock-

down measures together with enhanced contact tracing may have averted many subsequent

hospitalizations thereby minimizing disease burden on the already strained health-care system.

Contact tracing can further be improved through increasing manpower, improving efficiency

follow-up tools e.g., registry, public awareness and incentives to ensure voluntary/self-report-

ing and empowering of local response teams. Although the parameter influencing the number

of hospital acquired infections was of relatively low impact on the number of symptomatic

cases in the sensitivity analysis, field experience with handling COVID-19 in other countries

(note that Uganda did not report any hospital acquired infection for the first two months of

her epidemic) as well as diseases such as Ebola in Uganda dictates that this should be main-

tained at a bare minimum to ensure that health workers do not shun their duties. It is clear

that hospital acquired infections go beyond merely increasing the number of cases, their miti-

gation should be given high priority. This can be achieved through ensuring appropriate use of

properly fitting personal protective equipment, providing refresher training to the frontline

medical personnel and ensuring adequate staffing at the treatment and sample collection cen-

ters among others.

There are some limitations to our analysis that may either arise from the assumptions of the

model or its parametrization since we used biologically plausible parameters based on current

evidence yet some may be refined as more comprehensive data become available. For example,

the COVID-19 induced mortality rate derived for this study based on data from Uganda is rel-

atively lower than global values (e.g., those reported in [36]) and this may be validated in

future. The other parameter that has been reported to vary widely across countries is the per-

centage of asymptomatic individuals. Several studies have estimated this proportion using data

from different sources including hospitals and cruise ships and their estimated values have

ranged from 18% to 81% [37–41].

Given the demonstrated coupling of Uganda’s disease dynamics with those in her neighbor-

ing countries, network based modeling approaches would be better suited to assess potential
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impact of the coupling pathways on the disease dynamics. Although we assumed constant

external disease pressure in this study, we recommend that future studies adopt the network

modeling approach whenever relevant data to substantiate those network based models is

available. On lockdown modeling, we assumed that a percentage of the susceptible population

was isolated by the lockdown restrictions and hence impossible to become infected. This

assumption is justified by the strictness in enforcing these measures in Uganda. However, for

relatively lax implementation of the measures, alternative approaches such as that involving

splitting the population into the quarantine and non-quarantine groups as done by [22] could

be more suitable.

In all, results highlight importance of strict adherence to SOPs, minimization of compla-

cency as well as maintenance of partial lockdowns until a point when the regional and even

global situation improves. Given the scantiness of details on the pathogen characteristics (e.g.,

the duration of the disease-induced immunity and consequently herd-immunity and, infec-

tiousness of asymptomatic individuals) and the epidemiological information, return to full

activity may have to wait until when an effective vaccine and/or drug is found and used

massively.
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